

Phase Diagram and Instability of Dense Neutral Quark Matter

Kenji Fukushima (RIKEN BNL Research Center)

Ref: K.Fukushima, Phys.Rev.D72: 074002 (2005) hep-ph/0510299

Phase Diagram at High Density

ふくかくかくかくかくかくかくかくかくかくかくかんかんかん

Our Goal --- Instability

るくかくかくかくかくかくかくかくかくかくかくかんかんかん

Cooper Pairing Patterns

మించి మించి

Diquark Condensate

$$\Delta_{\alpha i} \propto \varepsilon_{\alpha \beta \gamma} \varepsilon_{ijk} \left\langle \overline{\psi}_{\beta j} i \gamma_5 C \overline{\psi}_{\gamma k}^{\mathrm{T}} \right\rangle$$

Anti-symmetric in Color (attractive in OGE) Anti-symmetric in Flavor, Positive Parity (energetically) Anti-symmetric in Spin

Color-Flavor Locking $\Delta_{\alpha i} = \delta_{\alpha i} \Delta_{i}$

$$\Delta_{\alpha i} = \delta_{\alpha i} \Delta_i$$

analogous to the ³He B phase

$$\Delta_{bs} \to \Delta_3$$

$$ru - gd$$

$$gu - rd$$

$$\Delta_{ru} \to \Delta_1$$

$$gd - bs$$

$$bd - gs$$

$$\Delta_{gd} \to \Delta_2$$

$$bs - ru$$

$$rs - bu$$

October 2005

Family of Color Superconductors

るくかくかくかくかくかくかくかくかくかくかくかんかんかん

 $\Delta_1, \Delta_2, \Delta_3 \neq 0$ Color - Flavor Locked (CFL) Phase

$$\Delta_1 = 0, \quad \Delta_2, \Delta_3 \neq 0$$

$$\Delta_2 = 0, \quad \Delta_1, \Delta_3 \neq 0$$

$$\Delta_1 = \Delta_2 = 0, \quad \Delta_3 \neq 0$$

$$\Delta_1 = \Delta_2 = \Delta_3 = 0$$

UQM

Effect of Non-Zero M_s

ふくふくふくふくふくふくかんかんかんかんかんかんかんかん

Gapless Superconductor

Gapless dispersion appears when $\Delta < \delta \mu / 2$

This happens for Δ_1 pairing, which makes Δ_1 disfavored.

$$\Delta_1 < \Delta_2 < \Delta_3$$

 Δ_1 melts first \rightarrow uSC

$$bd$$
- gs (Δ_1) gapless rs - bu (Δ_2) gapless (quadratic)

dSC near Tc

おくかくかくかくかくかくかくかくかくかくかくかくかんかん

Electric neutrality with $M_S \neq 0$

$$Q_e = \operatorname{diag}\left(\frac{2e}{3}, -\frac{e}{3}, -\frac{e}{3}\right)$$

$$\Delta_2 < \Delta_1 < \Delta_3$$

 Δ_2 vanishes first \rightarrow dSC

Phase Diagram at High Density

ふくかくかくかくかくかくかくかくかくかくかくかんかんかん

Chromomagnetic Instability

ふくふくふくふくふくふくかんかんかんかんかんかんかんかん

Meissner Screening Mass

Meissner mass is the screening mass for the transverse gluons.

Meissner mass is imaginary in the gapless phases
Shovkovy-Huang

near the gCFL onset

Fukushima, PRD72: 074002 (2005)

October 2005

Unstable Gluons near gCFL

おくかくかくかくかくかくかくかくかくかくかくかくかんかん

 $A_{1,2}$ gluons λ_1 in color space \rightarrow red-green

A_{3,8} gluons (photon) same colors

October 2005

Instability Regions

Colored Crystalline Phase

おくろくろくろくろくろくろくろくろくろくろくろくろくろく**ろ**く

Instability for A_i = Instability for q_i (Giannakis-Ren)

$$\langle \psi \psi \rangle \sim |\Delta| e^{iq \cdot x}$$
 Crystalline Superconducting Phase (Covariant Derivative $q_i + A_i$)

Five variational parameters are needed

$$A_{1,2} A_{4,5} A_{6,7} A_3 A_8$$

Rotational symmetry is broken

Calculations are technically very difficult.

Summary

- The QCD phase diagram in the high density region has the CFL, uSC, dSC phases.
 - □ uSC comes out as a remnant of the gCFL phase.
 - □ dSC results from the Fermi surface ordering.

- The chromomagnetic instability occurs for $A_{1,2}$ and $A_{3,8}$ near the gCFL onset.
 - □ Quadratic quarks cause the instability.
 - □ Colored Crystalline Phase...How?